Constraints on Dynamo Evolution from Spectropolarimetry of Solar Analogs NSF ## A paradigm shift for magnetic evolution Skumanich 1972 Metcalfe+2023 slide: Victor See ## Weakened magnetic braking suspected - Older Kepler field stars rotate more quickly than expected from theory - Discrepancy appears at critical Rossby number, Ro = (P_{rot} / τ_c) ~ Ro_o - Models with weakened magnetic braking beyond Ro_⊙ reproduce the data ## Weakened magnetic braking confirmed - Distribution of rotation periods in the Kepler field shows long-period edge - No detection bias: rotation from asteroseismology shows similar distribution - <u>Pile-up confirmed</u>: sample with precise T_{eff} shows range of ages near edge ### 1. slow rotation becomes non-differential 2. loss of shear disrupts field conversion 3. decaying dipole stalls braking Higgins 2012 Reville+2015 ## Activity level evolves continuously with age - Activity of solar analogs and asteroseismic targets decline continuously - Solar dipole field is ~1 G while unstructured quiet Sun has (B) ~170 G - Disruption of large-scale organization is irrelevant to integrated activity level # Variability is Sun-like before disappearing - Variability in young solar analogs is multi-periodic, often appears irregular - Sun-like cycles appear at high Rossby number, evolving to "flat activity" - Grand minima could be intermittency as activity evolves across threshold Egeland+2017, Tripathi+2021, Kitchatinov 2022 ### Cycles grow longer and weaker in old stars - Stalled rotation coincides with longer activity cycles and weaker variability - Same pattern observed in hotter and cooler stars at same Rossby number - Solar cycle appears to be in the transition, and may disappear in a few Gyr Metcalfe & van Saders 2017, Metcalfe+2019 © 2021. The American Astronomical Society. All rights reserved. #### Magnetic and Rotational Evolution of ρ CrB from Asteroseismology with TESS Travis S. Metcalfe^{1,2}, Jennifer L. van Saders³, Sarbani Basu⁴, Derek Buzasi⁵, Jeremy J. Drake⁶, Ricky Egeland⁷, Daniel Huber³, Steven H. Saar⁶, Keivan G. Stassun⁸, Warrick H. Ball^{9,10}, Tiago L. Campante^{11,12}, Adam J. Finley¹³, Oleg Kochukhov¹⁴, Savita Mathur^{15,16}, Timo Reinhold¹⁷, Victor See¹⁸, Sallie Baliunas⁶, and Willie Soon⁶ THE ASTROPHYSICAL JOURNAL LETTERS, 933:L17 (6pp), 2022 July 1 https://doi.org/10.3847/2041-8213/ac794d © 2022. The Author(s). Published by the American Astronomical Society. #### **OPEN ACCESS** ### The Origin of Weakened Magnetic Braking in Old Solar Analogs Travis S. Metcalfe¹, Adam J. Finley², Oleg Kochukhov³, Victor See⁴, Thomas R. Ayres⁵, Keivan G. Stassun⁶, Jennifer L. van Saders⁷, Catherine A. Clark^{8,9}, Diego Godoy-Rivera^{10,11,12}, Ilya V. Ilyin¹³, Marc H. Pinsonneault¹⁰, Klaus G. Strassmeier¹³, and Pascal Petit¹⁴ The Astrophysical Journal Letters, 948:L6 (5pp), 2023 May 1 https://doi.org/10.3847/2041-8213/acce38 © 2023. The Author(s). Published by the American Astronomical Society. #### **OPEN ACCESS** ### Constraints on Magnetic Braking from the G8 Dwarf Stars 61 UMa and τ Cet Travis S. Metcalfe¹, Klaus G. Strassmeier², Ilya V. Ilyin², Jennifer L. van Saders³, Thomas R. Ayres⁴, Adam J. Finley⁵, Oleg Kochukhov⁶, Pascal Petit⁷, Victor See⁸, Keivan G. Stassun⁹, Sandra V. Jeffers¹⁰, Stephen C. Marsden¹¹, Julien Morin¹², and Aline A. Vidotto¹³ ### Direct estimates of wind braking torque - Braking torque weakens by ~300x between Ro of 61 UMa and τ Cet - Empirical value of critical Ro (shaded) constrained by HD 76151 and 16 Cyg - Larger uncertainties when we only have upper limits on the large-scale field ### Summary of conclusions - At a critical Rossby number comparable to the solar value, magnetic field loses large-scale organization - At constant rotation period, the magnetic cycle grows longer and weaker on stellar evolutionary timescales - As stars evolve below a critical activity level, cycles can become intermittent producing grand minima - Subgiant rotation slows further and cycles disappear, but then CZ deepens and reinvigorates the dynamo