Combining TESS asteroseismology & LBT spectropolarimetry of p CrB

Travis Metcalfe (SSI → WDRC)

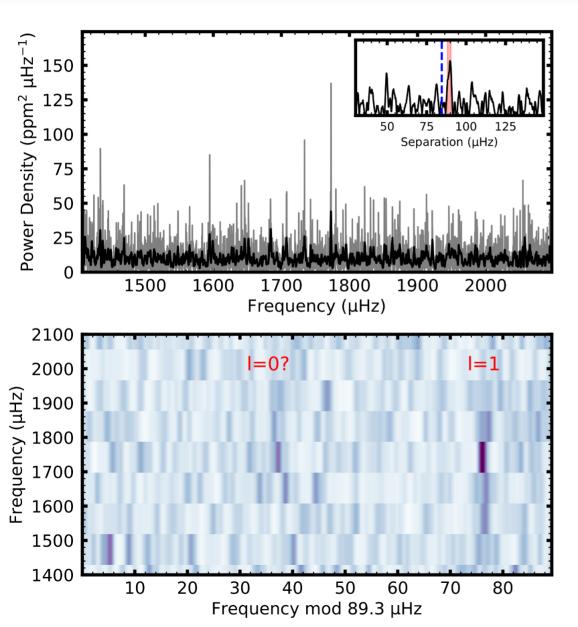
Wind Braking Torque (B_d, B_g, B_o, M, P_{rot}, M, R)

MWO HK data

 P_{rot} , R'_{HK}

Chandra x-ray flux

 $|\mathsf{F}_{\mathsf{x}} \to \dot{\mathsf{M}}|$


LBT spectropolarimetry

 B_d, B_a, B_o

MWO: stellar activity and rotation

TESS: asteroseismic properties

- TESS data from S24-S25: low S/N detection of solarlike oscillations in ρ CrB
- Grid-based modeling gives: R=1.304±0.012 R_o, M=0.96 ±0.02 M_o, age=9.8±0.6 Gyr
- Null detection for 88 Leo, so estimate R and M from SED, age from rotation

Chandra: mass-loss rate

Chandra: mass-loss rate

LBT: magnetic morphology

- 88 Leo: detection of largescale field, dominated by a dipole with strength ~5.0 G
- ρ CrB: relative activity level is 64%, but upper limit on dipole field strength is B_d < 0.7 G
- Upper limits on quadrupole and octupole fields are larger from geometric cancellation

RESULTS: weakened magnetic braking

- Asteroseismic age of ρ CrB is consistent with activity-age relation
- Weakened braking models required to match the rotation of ρ CrB
- Wind braking torque for ρ CrB is < 8% of torque for 88 Leo

Summary of conclusions

- Asteroseismic age of ρ CrB agrees with the expected evolution of its mean activity level (gyro age does not)
- Wind braking torque for ρ CrB is < 8% of the torque for 88 Leo (without a morphology shift it would be 32%)
- Standard spin-down models can match the rotation of 88 Leo, but weakened braking is required for ρ CrB
- Future tests from new LBT/PEPSI spectropolarimetry, combined with 20-sec TESS observations in Cycle 4

Read the paper at arXiv:2108.01088